Gujarati
Hindi
1. Electric Charges and Fields
medium

Three charges are placed as shown in figure. The magnitude of $q_1$ is $2.00\, \mu C$, but its sign and the value of the charge $q_2$ are not known. Charge $q_3$ is $+4.00\, \mu C$, and the net force on $q_3$ is entirely in the negative $x-$ direction. The magnitude of $q_2$ is

A

$\frac{{27}}{{64}}\,\mu C$

B

$\frac{{27}}{{32}}\,\mu C$

C

$\frac{{13}}{{32}}\,\mu C$

D

$\frac{{13}}{{64}}\,\mu C$

Solution

The four possible force diagrams are shown in fig. Only the last picture can result in an electric field in the negative $\mathrm{x}$ – direction. 

$\mathrm{q}_{1}=-2.00\, \mu \mathrm{C}, \mathrm{q}_{3}=+4.00 \,\mu \mathrm{C},$ and $\mathrm{q}_{2}>0$

as force on $\mathrm{q}_{3}$ is horizontal

so vertical component of $\mathrm{E}$ will be zero at $\mathrm{q}_{3}$ or $\quad \mathrm{E}_{y}=0$

${\therefore \mathrm{E}_{1} \sin \theta \quad \mathrm{E}_{2} \cos \theta} $

${\frac{\mathrm{k} \mathrm{q}_{1}}{\left(4 \times 10^{-2}\right)^{2}} \times \sin \theta=\frac{\mathrm{k} \mathrm{q}_{2}}{\left(3 \times 10^{-2}\right)} \cos \theta} $

${\mathrm{q}_{2}=\frac{9}{16} \times \tan \theta \times \mathrm{q}_{1}=\frac{9}{16} \times \frac{3}{4} \times 2\, \mu \mathrm{C}=\frac{27}{32}\, \mu \mathrm{C}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.