$(a)$ Consider an arbitrary electrostatic field configuration. A small test charge is placed at a null point (i.e., where $E =0$ ) of the configuration. Show that the equilibrium of the test charge is necessarily unstable.
$(b)$ Verify this result for the simple configuration of two charges of the same magnitude and sign placed a certain distance apart.
$(a)$ Let the equilibrium of the test charge be stable. If a test charge is in equilibrium and displaced from its position in any direction, then it experiences a restoring force towards a null point, where the electric field is zero. All the field lines near the null point are directed inwards. towards the null point. There is a net inward flux of electric field through a closed surface around the null point. According to Gauss's law, the flux of electric field through a surface, which is not enclosing any charge, is zero. Hence, the equilibrium of the test charge can be stable.
$(b)$ Two charges of same magnitude and same sign are placed at a certain distance. The midpoint of the joining line of the charges is the null point. When a test charged is displaced along the line, it experiences a restoring force. If it is displaced normal to the joining line, then the net force takes it away from the null point. Hence, the charge is unstable because stability of equilibrium requires restoring force in all directions.
Three identical point charges, as shown are placed at the vertices of an isosceles right angled triangle. Which of the numbered vectors coincides in direction with the electric field at the mid-point $M$ of the hypotenuse
The three charges $q / 2, q$ and $q / 2$ are placed at the corners $A , B$ and $C$ of a square of side ' $a$ ' as shown in figure. The magnitude of electric field $(E)$ at the comer $D$ of the square, is
The electric field due to a charge at a distance of $3\, m$ from it is $500\, N/coulomb$. The magnitude of the charge is.......$\mu C$ $\left[ {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,\frac{{N - {m^2}}}{{coulom{b^2}}}} \right]$
In the given figure electric field at center $O$ due to section $AB$ of uniformly charged ring is $\overrightarrow E$. What will be electric field at $O$ due to section $ACB$ ?
What is the magnitude of a point charge due to which the electric field $30\,cm$ away has the magnitude $2\,newton/coulomb$ $[1/4\pi {\varepsilon _0} = 9 \times {10^9}\,N{m^2}/{C^2}]$