तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
${Q^2}/(4\pi {\varepsilon _0}{a^2})$
$ - {Q^2}/(4\pi {\varepsilon _0}{a^2})$
शून्य
${Q^2}/(2\pi {\varepsilon _0}{a^2})$
एक वर्ग के विपरीत कोनों में प्रत्येक पर एक आवेश $Q$ रखा है। दूसरे दो विपरीत कोनों पर आवेश $q$ रखा है। यदि $Q$ पर परिणामी विद्युत बल शून्य है, तब $\frac{Q}{q}$ का मान है।
निर्वात में '$r$' सेमी की दूरी पर स्थित दो बिन्दु आवेशों $\mathrm{q}_1$ व $\mathrm{q}_2$ के बीच लगने वाला बल $\mathrm{F}$ है। $K=5$ परावैद्युतांक वाले माध्यम में ' $r / 5$ ' सेमी. दूरी पर स्थित उन्हीं आवेशों की बीच लगने वाला बल होगा :
$5 \times {10^{ - 11}}\,C$ एवं $ - 2.7 \times {10^{ - 11}}\,C$ के दो आवेश एक दूसरे से $0.2$ मीटर की दूरी पर स्थित हैं। इन दोनों को जोड़ने वाली रेखा पर एक तीसरा आवेश $ - 2.7 \times {10^{ - 11}}\,C$ से कितनी ......मीटर दूरी पर रखा जाये कि उस पर कार्यरत कुल बल शून्य हो
दो एकसमान धात्विक गोले $A$ और $B$ जब हवा में एक निश्चित दूरी पर रखे जाते है तो एक-दूसरे को $F$ बल से प्रतिकर्षित करते हैं। एक और समरूप अनावेशित गोला $C$, पहले $A$ के सम्पर्क में, फिर $B$ के सम्पर्क में और अंत में $A$ और $B$ के मध्य बिन्दू पर रखा जाता है। गोले $C$ द्वारा अनुभव किया बल होगा :
दो धनात्मक आवेश वाले गोले जिनका द्रव्यमान $m_1$ तथा $m_2$ है, छत पर उभय बिन्दु से एकसमान कुचालक भारहीन डोरी, जिसकी लंबाई $l$ है, से लटके हुए हैं। दोनों गोलों का आवेश क्रमश: $q_1$ तथा $q_2$ है। साम्यावस्था में दोनों गोलों की डोरियाँ ऊर्ध्वाधर से समान कोण $\theta$ बनाती हैं। तब