तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
${Q^2}/(4\pi {\varepsilon _0}{a^2})$
$ - {Q^2}/(4\pi {\varepsilon _0}{a^2})$
शून्य
${Q^2}/(2\pi {\varepsilon _0}{a^2})$
$x-$ अक्ष के बिन्दुओं $x =- a$ तथा $x = a$ में प्रत्येक पर समान आवेश $q$ रखा हैं, तथा इसके केन्द्र पर $m$ द्रव्यमान तथा $q _{0}=\frac{ q }{2}$ आवेश का एक कण रखा हैं। यदि आवेश $q_0$ को $y-$ अक्ष के अनुदिश अल्प दूरी $( y << a )$ विस्थापित किया जाए, तो कण पर लगने वाला परिणामी बल समानुपाती होगा,
लम्बाई $ a$ के एक वर्ग के चारों कोनों $A,\,B,\,C,\,D$ पर समान आवेश $q$ रखे हैं। $D$ पर रखे हुए आवेश पर लगने वाले बल का परिमाण होगा
$10^{-4}$ मी. $^2$ अनुप्रस्थ परिच्छेद क्षेत्रफल वाले एक धातु के पतले तार का प्रयोग करके $30$ सेमी. त्रिज्या का एक छल्ला (रिंग) बनाया गया है। $2 \pi \mathrm{C}$ के एक धन आवेश को छल्ले पर एक समान रूप से वितरित किया गया है तथा $30 \mathrm{pC}$ का दूसरा धन आवेश छल्ले के केन्द्र पर रखा गया है। छल्ले में तनाव . . . . . . .${N}$ है जबकि छल्ले का आकार अपरिवर्तित रहता है।
(गुरूत्व का प्रभाव नगण्य मान कर)
(यदि, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक)
दो समान आवेश $Q$ परस्पर कुछ दूरी पर रखे हैं इनको मिलाने वाली रेखा के केन्द्र पर $q$ आवेश रखा गया है। तीनों आवेशों का निकाय सन्तुलन में होगा यदि $q$ का मान हो
$4$ सेमी और $6$ सेमी की त्रिज्या के दो गोलों $A$ और $B$ को क्रमश: $80\,\mu C$ और $40\,\mu C$ आवेश दिया जाता है। इन दोनों को पतले तार से जोड़ा जाता है तो एक गोले से आवेश दूसरे गोले को जावेगा