दो छोटी गेंदें जिनमें प्रत्येक पर $ + Q$ कूलॉम धन आवेश है, एक स्टैण्ड के हुक से बराबर लम्बाई $L$ मीटर की दो विद्युतरोधी डोरियों से लटकाई गई हैं। इस समायोजन को एक उपग्रह में रखकर अंतरिक्ष में जहाँ गुरुत्वाकर्षण नहीं है, ले जाया जाता है। दोनों डोरियों के बीच कोण तथा डोरियों में तनाव होगा

  • [IIT 1986]
  • A

    ${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{{(2L)}^2}}}$

  • B

    ${90^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$

  • C

    ${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{2{L^2}}}$

  • D

    ${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$

Similar Questions

दो स्थिर इलेक्ट्रॉनों, जिनके बीच की दूरी $'2d'$ है, के बीच इन्हें मिलाने वाली रेखा के मध्यबिन्दु पर तीसरा आवेश प्रोटॉन रखा है। इस प्रोटॉन को किसी लघु दूरी $x ( x < d )$ तक दोनों इलेक्ट्रॉनों को मिलाने वाली रेखा के लम्बवत् विस्थापित किया गया है। इसके कारण यह प्रोटॉन सरल आवर्त गति करने लगता है, जिसकी कोणीय आवत्ति होती है: $( m =$ आवेशित कण की संहति $)$

  • [JEE MAIN 2021]

दो समरूप चालक गोलों $A$ व $B$ पर समान आवेश हैं। प्रारम्भ में उनके बीच की दूरी उनके व्यासों से बहुत अधिक है तथा उनके बीच बल $F$ है। $C$ इसी तरह का एक तीसरा गोला है जो आवेशहीन है। गोले $C$ को पहले $A$ से स्पर्श कराते हैं, फिर $B$ से स्पर्श कराते हैं और फिर हटा देते हैं। इस प्रकार से $A$ और $B$ के बीच बल का मान होगा

  • [JEE MAIN 2018]

$40$ स्थैतिक कूलॉम बिन्दु आवेश से $2$ सेमी की दूरी पर भू-संयोजित धातु की बड़ी प्लेट रखी गई है, तो बिन्दु आवेश पर लगने वाला आकर्षण बल .........डाइन है

दो एकसमान आवेशित गोलों को बराबर लम्बाई की डोरियों से लटकाया गया है। डोरियाँ एक-दूसरे से $30^{\circ}$ का कोण बनाती है। जब $0.8\, gcm ^{-3}$, घनत्व के द्रव में लटकाया जाता हैं, तो कोण वही रहता है। यदि गोले के पदार्थ का घनत्व $1.6\, gcm ^{-3}$ है, तब द्रव का परावैघुतांक है

  • [AIEEE 2010]

$10^{-4}$ मी. $^2$ अनुप्रस्थ परिच्छेद क्षेत्रफल वाले एक धातु के पतले तार का प्रयोग करके $30$ सेमी. त्रिज्या का एक छल्ला (रिंग) बनाया गया है। $2 \pi \mathrm{C}$ के एक धन आवेश को छल्ले पर एक समान रूप से वितरित किया गया है तथा $30 \mathrm{pC}$ का दूसरा धन आवेश छल्ले के केन्द्र पर रखा गया है। छल्ले में तनाव . . . . . . .${N}$ है जबकि छल्ले का आकार अपरिवर्तित रहता है।

(गुरूत्व का प्रभाव नगण्य मान कर)

(यदि, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक)

  • [JEE MAIN 2024]