Three concentric metallic shells $A, B$ and $C$ of radii $a, b$ and $c (a < b < c)$ have surface charge densities $\sigma ,\, - \sigma $ and $\sigma $ respectively. then ${V_A}$ and ${V_B}$
$\frac{\sigma }{{{\varepsilon _0}}}(a - b +c),\,\frac{\sigma }{{{\varepsilon _0}}}\left( {\frac{{{a^2}}}{b} - b + c} \right)$
$(a - b - c),\,\frac{{{a^2}}}{c}$
$\frac{{{\varepsilon _0}}}{\sigma }(a - b - c),\,\frac{{{\varepsilon _0}}}{\sigma }\left( {\frac{{{a^2}}}{c} - b + c} \right)$
$\frac{\sigma }{{{\varepsilon _0}}}\left( {\frac{{{a^2}}}{c} - \frac{{{b^2}}}{c} + c} \right)$ ,$\frac{\sigma }{{{\varepsilon _0}}}(a - b + c)$
A uniform electric field of $20\, N/C$ exists along the $x$ -axis in a space. The potential difference $(V_B -V_A)$ for the point $A(4\,m, 2\,m)$ and $B(6\,m, 5\,m)$ is.....$V$
Define electric potential and explain it. Write its $\mathrm{SI}$ unit and give its other units.
The electric potential at the surface of an atomic nucleus $(z=50)$ of radius $9 \times 10^{-13} \mathrm{~cm}$ is ________$\times 10^6 \mathrm{~V}$.
Two metal spheres of radii ${R_1}$ and ${R_2}$ are charged to the same potential. The ratio of charges on the spheres is
Can the potential function have a maximum or minimum in free space ? Explain.