Two insulated charged conducting spheres of radii $20\,cm$ and $15\,cm$ respectively and having an equal charge of $10\,C$ are connected by a copper wire and then they are separated. Then
Both the spheres will have the same charge of $10\,C$
Surface charge density on the $20\,cm$ sphere will be greater than that on the $15\,cm$ sphere
Surface charge density on the $15\,cm$ sphere will be greater than that on the $20\,cm$ sphere
Surface charge density on the two spheres will be equal
In a hollow spherical shell potential $(V)$ changes with respect to distance $(r)$ from centre
charge $Q$ is uniformly distributed over a long rod $AB$ of length $L$ as shown in the figure. The electric potential at the point $O$ lying at distance $L$ from the end $A$ is
Four charges $2C, -3C, -4C$ and $5C$ respectively are placed at all the corners of a square. Which of the following statements is true for the point of intersection of the diagonals ?
Consider two conducting spheres of radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$ with $\left( {{{\rm{R}}_1} > {{\rm{R}}_2}} \right)$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whether the charge density of the smaller sphere is more or less than that of the larger one.
Electric charges of $ + 10\,\mu C,\; + 5\,\mu C,\; - 3\,\mu C$ and $ + 8\,\mu C$ are placed at the corners of a square of side $\sqrt 2 \,m$. the potential at the centre of the square is