$a, b$ एवं $c[a < b < c]$ त्रिज्याओं वाले तीन सकेन्द्रीय धात्विक कोशों $\mathrm{X}, \mathrm{Y}$ एवं $\mathrm{Z}$ पर पृष्ठ धारा घनत्व क्रमशः $\sigma,-\sigma$ एवं $\sigma$ है। कोशों $\mathrm{X}$ एवं $\mathrm{Z}$ पर विभव समान है। यदि कोशों $\mathrm{X}$ एवं $\mathrm{Y}$ की त्रिज्याऐं क्रमशः $2 \mathrm{~cm}$ एवं $3 \mathrm{~cm}$ हैं। कोश $Z$ की त्रिज्या_______________$\mathrm{cm}$ है।
$4$
$3$
$2$
$5$
यदि एक समबाहु त्रिभुज के तीनों शीर्ष पर $2q,\, - q,\, - q$ आवेश क्रमश: स्थित हैं, तो त्रिभुज के केन्द्र पर
$2 \,cm$ त्रिज्या की $64$ सर्वसम बूँदों में प्रत्येक पर ${10^{ - 9}}\,C$ आवेश रखा जाता है। अब उन्हें संयुक्त कर एक बड़ी बूँद बनायी जाती है। इसका विभव ज्ञात कीजिए
एकसमान बूँदे जिनकी संख्या $125$ है, प्रत्येक को $50$ वोल्ट विभव से आवेशित किया जाता है। अब इन्हें जोड़कर बनी नई बूँद का विभव ......$V$ होगा
किसी स्थान पर एक विद्युत क्षेत्र, $\overrightarrow{ E }=(25 \hat{ i }+30 \hat{ j }) NC ^{-1}$, विद्यमान है। यदि मूलबिन्दु पर विभव का मान शून्य माना जाय तो, $x=2\; m , y=2\; m$ पर विभव होगा :
एक साबुन के बुलबुले जिसका विभव $16\,V$ है, की त्रिज्या दुगनी कर दी जाये तो, बुलबुले का नया विभव ........$V$ हो जायेगा