तीन समकेन्द्री गोलों की त्रिज्याएं $a , b$ और $c$ (जबकि $a < b < c$ है ) हैं और इनके तलीय आवेश घनत्व क्रमानुसार $\sigma,-\sigma$ और $\sigma$ हैं। यदि $V _{ A }, V _{ B }$ और $V _{ C }$ इन तीन गोलों के विभवों को सूचित करते हों, तो $c = a + b$ होने पर :-
$V_C=V_B \ne V_A$ होगा
$V_C \ne V_B \ne V_A$ होगा
$V_C=V_B=V_A$ होगा
$V_C=V_A \ne VB$ होगा
आवेश $Q,$ एक $L$ लम्बाई की छड़ $AB$ चित्र में दर्शाया गया है, पर समान रूप से वितरित हो जाता है। छड़ के सिरे $A$ से $L$ दूरी पर स्थित बिन्दु $O$ पर विघुत विभव का मान होगा
मान लें व्योम में एक विध्युत क्षेत्र $\vec{E}=30 x^{2} \hat{i}$ है। तब विभवान्तर $V_{A}-V_{O}$ जहाँ $V_{O}$ मूलबिन्दु पर विभव एवं $V_{A}, x=2 \,m$ पर विभव ....$V$ है।
$X-Y$ निर्देशांक निकाय के मूल बिन्दु $(0,0)$ मी. पर $10^{-6} \mu \mathrm{C}$ का एक आवेश स्थित है। दो बिन्दु $\mathrm{P}$ और $Q$ क्रमशः $(\sqrt{3}, \sqrt{3})$ मी तथा $(\sqrt{6}, 0)$ मी पर स्थित है। बिन्दु $\mathrm{P}$ व $\mathrm{Q}$ के बीच विभान्तर होगा:
तीन संकेन्द्री धातु कोष $A, B$ तथा $C$ जिनकी त्रिज्यायें क्रमशः $a$, $b$ तथा $c(a< b< c)$ हैं, का पृष्ठ-आवेश-घनत्व क्रमश : $+\sigma$ $-\sigma$ तथा $+\sigma$ है। कोष $B$ का विभव होगा
$R$ त्रिज्या के गोलीय चालक के केन्द्र से $R/2$ दूरी पर विभव होगा