आवेश $Q$ को तीन समकेन्द्रीय तथा त्रिज्या $a, b, c$ $( a < b < c )$ के गोलाकार कोशों पर इस तरह वितरित किया है कि तीनों पर क्षेत्रीय घनत्व बराबर है। कोशों के केन्द्र से दूरी $r\,<\,a$ पर स्थित एक बिन्दु पर कुल विभव का मान होगा?

  • [JEE MAIN 2019]
  • A

    $\frac{Q}{{12\pi \,{ \in _0}}}\frac{{ab + bc + ca}}{{abc}}$

  • B

    $\frac{{Q\,\left( {{a^2} + {b^2} + {c^2}} \right)}}{{4\pi \,{ \in _0}\,\left( {{a^3} + {b^3} + {c^3}} \right)\,}}$

  • C

    $\frac{Q}{{4\pi \,{ \in _0}\,\left( {a + b + c} \right)\,}}$

  • D

    $\frac{{Q\,\left( {a + b + c} \right)}}{{4\pi \,{ \in _0}\,\left( {{a^2} + {b^2} + {c^2}} \right)\,\,}}$

Similar Questions

$1000$ पानी की छोटी बूँदें जिनमें प्रत्येक की त्रिज्या $r$ एवं आवेश $q$ है, एक साथ मिलकर एक गोलाकार बूँद बनाती हैं। बड़ी बूँद का विभव छोटी बूँद के विभव का है

$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा

  • [JEE MAIN 2020]

एक पतले गोलीय चालक कोश की त्रिज्या $R$ तथा इस पर आवेश $q$ है। अन्य आवेश $Q$ को कोश के केन्द्र पर रख दिया गया है। गोलीय कोश के केन्द्र से $\frac{R}{2}$ दूरी पर बिन्दु $P$ पर विद्युत विभव होगा

  • [AIEEE 2003]

एकसमान आवेश घनत्व वाले एक गोले की कल्पना कीजिए जिसका कुल आवेश Q तथा त्रिज्या $R$ है. इस गोले के अन्दर स्थिरवैद्युत विभव के वितरण को $\emptyset(r)=\frac{Q}{4 \pi \epsilon_0 R}\left(a+b(r / R)^c\right)$ से निरूपित किया गया है. मान लीजिये कि अनंत पर विभव शून्य है. इस आधार पर $(a$, $b, c)$ के मान क्या होंगे?

  • [KVPY 2020]

धातुओं से बने हुए दो गोले $S _{1}$ और $S _{2}$ जिनकी त्रिज्याएँ क्रमशः $R _{1}$ और $R _{2}$ है आवेशित है। यदि इसकी सतह पर विधुत क्षेत्र $E _{1}\left( S _{1}\right.$ पर $)$ तथा $E _{2}\left( S _{2}\right.$ पर $)$ ऐसे हैं कि $E _{1} / E _{2}= R _{1} / R _{2}$ तो इन पर स्थिर वैधुत वोल्टता $V _{1}\left( S _{1}\right.$ पर $)$ तथा $V _{2}\left( S _{2}\right.$ पर $)$ का अनुपात $V _{1} / V _{2}$ होगा :

  • [JEE MAIN 2020]