Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by

A

$k$

B

$k^2$

C

$k^3$

D

None

Solution

since $7 x, 36 y, 12 z$ are divisible by $k$ Let us Assume $x=k a, y=k b, z=k c$ So the det $\Longrightarrow\left|\begin{array}{ccc}k a & 3 & 1 \\ 7 & 6 & k c \\ 1 & k b & 2\end{array}\right|$

$\Longrightarrow 12 k a-k^{3} a b c+3 k c+7 k b-48$

$\Longrightarrow$ From Question, $12 \mathrm{ka}-\mathrm{k}^{3} \mathrm{abc}+3 \mathrm{kc}+7 \mathrm{kb}-48+48$

Hence A

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.