3 and 4 .Determinants and Matrices
hard

The value of a for which the system of equations ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0,$ has a non zero solution is

A

$-1$

B

$0$

C

$1$

D

None of these

Solution

(a) The system will have a non-zero solution, if
$\Delta \equiv \left| {\,\begin{array}{*{20}{c}}{{a^3}}&{{{(a + 1)}^3}}&{{{(a + 2)}^3}}\\a&{a + 1}&{a + 2}\\1&1&1\end{array}\,} \right| = 0$

$ \Rightarrow \left| {\,\begin{array}{*{20}{c}}{{a^3}}&{3{a^2} + 3a + 1}&{3{{(a + 1)}^2} + 3(a + 1) + 1}\\{{a^2}}&1&1\\1&0&0\end{array}\,} \right| = 0$

by $\begin{array}{l}{C_2} \to {C_2} – {C_1}\\{C_3} \to {C_3} – {C_2}\end{array}$

==> $3{a^2} + 3a + 1 – \{ 3{(a + 1)^2} + 3(a + 1) + 1\} $

(expanding along ${R_3}$)

==> $ – 6(a + 1) = 0 \Rightarrow a = – 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.