Three fourth of the active decays in a radioactive sample in $3/4\, sec$. The half life of the sample is
$\frac{1}{2}\,sec$
$1 \,sec$
$\frac{3}{8}\, sec$
$\frac{3}{4}\, sec$
Assertion : ${}^{90}Sr$ from the radioactive fall out from a nuclear bomb ends up in the bones of human beings through the milk consumed by them. It causes impairment of the production of red blood cells.
Reason : The energetic $\beta - $ particles emitted in the decay of ${}^{90}Sr$ damage the bone marrow
A radioactive sample of $U^{238}$ decay to $Pb$ through a process for which half life is $4.5 × 10^9$ years. The ratio of number of nuclei of $Pb$ to $U^{238}$ after a time of $1.5 ×10^9$ years (given $2^{1/3} = 1.26$)
A radio nuclide $A_1$ with decay constant $\lambda_1$ transforms into a radio nuclide $A_2$ with decay constant $\lambda_2$ . If at the initial moment the preparation contained only the radio nuclide $A_1$, then the time interval after which the activity of the radio nuclide $A_2$ reaches its maximum value is :-
The average life $T$ and the decay constant $\lambda $ of a radioactive nucleus are related as
The normal activity of living carbon-containing matter is found to be about $15$ decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive $_{6}^{14} C$ present with the stable carbon isotope $_{6}^{12} C$. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life ($5730$ years) of $_{6}^{14} C ,$ and the measured activity, the age of the specimen can be approximately estimated. This is the principle of $_{6}^{14} C$ dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of $9$ decays per minute per gram of carbon. Estimate the approximate age (in $years$) of the Indus-Valley civilisation