Gujarati
6.System of Particles and Rotational Motion
normal

A thin and uniform rod of mass $M$ and length $L$ is held vertical on a floor with large friction. The rod is released from rest so that it falls by rotating about its contact-point with the floor without slipping. Which of the following statement($s$) is/are correct, when the rod makes an angle $60^{\circ}$ with vertical ? [ $g$ is the acceleration due to gravity]

$(1)$ The radial acceleration of the rod's center of mass will be $\frac{3 g }{4}$

$(2)$ The angular acceleration of the rod will be $\frac{2 g }{ L }$

$(3)$ The angular speed of the rod will be $\sqrt{\frac{3 g}{2 L}}$

$(4)$ The normal reaction force from the floor on the rod will be $\frac{ Mg }{16}$

A

$1,2,3$

B

$1,2,4$

C

$1,3,4$

D

$1,2$

(IIT-2019)

Solution

We can treat contact point as hinged.

Applying work energy theorem

$W _{ g }=\Delta K . E .$

$mg \frac{\ell}{4}=\frac{1}{2}\left(\frac{ m \ell^2}{3}\right) \omega^2$

(image)

$\omega=\sqrt{\frac{3 g }{2 \ell}}$

radial acceleration of $C.M.$ of rod $=\left(\frac{\ell}{2}\right) \omega^2=\frac{3 g }{4}$

Using $\tau= I \alpha$ about contact point

$\frac{ mg \ell}{2} \sin 60^{\circ}=\frac{ m \ell^2}{3} \alpha$

$\Rightarrow \alpha=\frac{3 \sqrt{3}}{4 \ell} g$

Net vertical acceleration of $C.M.$ of rod

$a _2= a _{ r } \cos 60^{\circ}+ a _{ t } \cos 30^{\circ}$

$=\left(\frac{3 g }{4}\right)\left(\frac{1}{2}\right)+\left(\alpha \frac{\ell}{2}\right) \cos 30^{\circ}$

$=\frac{3 g }{8}+\frac{3 \sqrt{3} g }{4 \ell}\left(\frac{\ell}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$

$=\frac{3 g }{8}+\frac{9 g }{16}=\frac{15}{16} g$

Applying $F_{\text {not }}= ma$ in vertical direction on rod as system

$mg – N = ma _{ v }= m \left(\frac{15}{16} g \right)$

$N =\frac{ mg }{16}$

(iamage)

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.