- Home
- Standard 11
- Physics
11.Thermodynamics
normal
Three moles of an ideal monatomic gas performs a cyclic process as shown in the figure. The temperatures in different states are $T_1 = 400\,K, T_2 = 800\,K, T_3 = 2400\,K$ and $T_4 = 1200\,K$. Determine the work done by the gas during the cycle .... $kJ$ [Given $R = 8.31\, J-mole^{-1}K^{-1}$)

A
$19.94$
B
$22.65$
C
$15.81$
D
$10.37$
Solution
$\mathrm{W}=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{34}+\mathrm{W}_{41}$
$=0+\mathrm{nR}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)+0+\mathrm{nR}\left(\mathrm{T}_{1}-\mathrm{T}_{4}\right)$
$=\mathrm{nR}\left[\left(\mathrm{T}_{3}+\mathrm{T}_{1}\right)-\left(\mathrm{T}_{2}+\mathrm{T}_{4}\right)\right]$
$=3 \times 8.31[(2800)-(2000)] J$
$=19944 \mathrm{J}$
Standard 11
Physics