Three numbers form a $G.P.$ If the ${3^{rd}}$ term is decreased by $64$, then the three numbers thus obtained will constitute an $A.P.$ If the second term of this $A.P.$ is decreased by $8$, a $G.P.$ will be formed again, then the numbers will be
$4, 20, 36$
$4, 12, 36$
$4, 20, 100$
None of the above
Let $x, y>0$. If $x^{3} y^{2}=2^{15}$, then the least value of $3 x +2 y$ is
If $f(x) = \sqrt {{x^2} + x} + \frac{{{{\tan }^2}\alpha }}{{\sqrt {{x^2} + x} }},\alpha \in (0,\pi /2),x > 0$ then value of $f(x)$ is greater than or equal to-
If all the terms of an $A.P.$ are squared, then new series will be in
If $9 A.M.'s$ and $H.M.'s$ are inserted between the $2$ and $3$ and if the harmonic mean $H$ is corresponding to arithmetic mean $A$, then $A + \frac{6}{H} = $
Let $\mathrm{A}_1, \mathrm{G}_1, \mathrm{H}_1$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $\mathrm{n} \geq 2$, let $A_{n-1}$ and $H_{n-1}$ has arithmetic, geometric and harmonic means as $A_n, G_n, H_n$ respectively.
$1.$ Which one of the following statements is correct?
$(A)$ $\mathrm{G}_1>\mathrm{G}_2>\mathrm{G}_3>\ldots$
$(B)$ $\mathrm{G}_1<\mathrm{G}_2<\mathrm{G}_3<\ldots$
$(C)$ $\mathrm{G}_1=\mathrm{G}_2=\mathrm{G}_3=\ldots$
$(D)$ $\mathrm{G}_1<\mathrm{G}_3<\mathrm{G}_5<\ldots$ and $\mathrm{G}_2>\mathrm{G}_4>\mathrm{G}_6>\ldots$
$2.$ Which of the following statements is correct?
$(A)$ $A_1>A_2>A_5>\ldots$
$(B)$ $A_1$
$(C)$ $\mathrm{A}_1>\mathrm{A}_3>\mathrm{A}_5>\ldots$ and $\mathrm{A}_2<\mathrm{A}_4<\mathrm{A}_6<\ldots$
$(D)$ $A_1A_4 > A_6 > \ldots$
$3.$ Which of the following statements is correct?
$(A)$ $\mathrm{H}_1>\mathrm{H}_2>\mathrm{H}_3>\ldots$
$(B)$ $\mathrm{H}_1<\mathrm{H}_2<\mathrm{H}_3<\ldots$
$(C)$ $\mathrm{H}_1>\mathrm{H}_3>\mathrm{H}_5>\ldots$ and $\mathrm{H}_2<\mathrm{H}_4<\mathrm{H}_6<\ldots$
$(D)$ $\mathrm{H}_1<\mathrm{H}_3<\mathrm{H}_5<\ldots$ and $\mathrm{H}_2>\mathrm{H}_4>\mathrm{H}_6>\ldots$
Give the answer question $1,2$ and $3.$