આકૃતિમાં દર્શાવ્યા અનુસાર દરેકે $A$ મૂલ્ય ધરાવતા ત્રણ સદિશો $\overrightarrow{O P,} \ \overrightarrow{O Q}$ અને $\overrightarrow{O R}$ અસરકર્તા છે. ત્રણ સદિશોનો પરિણામી $\mathrm{A} \sqrt{x}$ છે. $x$ નું મૂલ્ય. . . . . . થશે.
$5$
$4$
$2$
$3$
બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
${F_1} = 1\,N$ બળ $x = 0$ ની દિશામાં છે,અને ${F_2} = 2\,N$ બળ $y = 0$ ની દિશામાં છે,તો પરિણામી બળ મેળવો
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
$\mathop A\limits^ \to - \mathop B\limits^ \to \,$ અને $\mathop B\limits^ \to - \mathop A\limits^ \to \,$ ના મૂલ્ય અને દિશા સમાન હોય ?
જો બે એકમ સદિશનો સરવાળો પણ એક એકમ સદિશ હોય તો તેમના માપન મુલ્યનો તફાવત અને તે બે સદીશો વચ્ચે બનતો કોણ કેટલો હેશે ?