Two bubbles $A$ and $B$ $(r_A > r_B)$ are joined through a narrow tube. Then
The size of $A$ will increase
The size of $B$ will increase
The size of $B $ will increase until the pressure equals
None of these
A hot air balloon is a sphere of radius $8$ $m$. The air inside is at a temperature of $60^{°}$ $C$. How large a mass can the balloon lift when the outside temperature is $20^{°}$ $C$ ? Assume air is an ideal gas, $R = 8.314\,J\,mol{e^{ - 1}},1\,atm = 1.013 \times {10^5}{P_a},$ the membrane tension is $= 5\,N/m$.
Air (density $\rho$ ) is being blown on a soap film (surface tension $T$ ) by a pipe of radius $R$ with its opening right next to the film. The film is deformed and a bubble detaches from the film when the shape of the deformed surface is a hemisphere. Given that the dynamic pressure on the film due to the air blown at speed $v$ is $\frac{1}{2} \rho v^{2}$, the speed at which the bubble formed is
Two soap bubbles coalesce to form a single bubble. If $V$ is the subsequent change in volume of contained air and $S$ change in total surface area, $T$ is the surface tension and $P$ atmospheric pressure, then which of the following relation is correct?
The excess pressure due to surface tension in a spherical liquid drop of radius r is directly proportional to
If the radius of a soap bubble is four times that of another, then the ratio of their excess pressures will be