Two soap bubbles coalesce to form a single bubble. If $V$ is the subsequent change in volume of contained air and $S$ change in total surface area, $T$ is the surface tension and $P$ atmospheric pressure, then which of the following relation is correct?
$4PV+3ST = 0$
$3PV+4ST = 0$
$2PV+3ST = 0$
$3PV+2ST = 0$
A capillary tube of radius $r$ is dipped in a liquid of density $\rho$ and surface tension $S$. If the angle of contact is $\theta$, the pressure difference between the two surfaces in the beaker and the capillary
A hot air balloon is a sphere of radius $8$ $m$. The air inside is at a temperature of $60^{°}$ $C$. How large a mass can the balloon lift when the outside temperature is $20^{°}$ $C$ ? Assume air is an ideal gas, $R = 8.314\,J\,mol{e^{ - 1}},1\,atm = 1.013 \times {10^5}{P_a},$ the membrane tension is $= 5\,N/m$.
When an air bubble of radius $r$ rises from the bottom to the surface of a lake, its radius becomes $\frac{{5r}}{4}$.Taking the atmospheric pressure to be equal to $10\,m$ height of water column, the depth of the lake would approximately be ....... $m$ (ignore the surface tension and the effect of temperature)
There is small hole in a hollow sphere. The water enters in it when it is taken to a depth of $40 \,cm$ under water. The surface tension of water is $0.07 \,N / m$. The diameter of hole is .......... $mm$
A soap bubble in vacuum has a radius of $3 \,cm$ and another soap bubble in vacuum has a radius of $4 \,cm$. If the two bubbles coalesce under isothermal condition, then the radius of the new bubble is ....... $cm$