Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.
There are $26$ black cards in a deck of $52$ cards.
Let $P(A)$ be the probability of getting a black card in the first draw.
$\therefore $ $P(A)=\frac{26}{52}=\frac{1}{2}$
Let $\mathrm{P}(\mathrm{B})$ be the probability of getting a black card on second draw. since the card is not replaced,
$\therefore $ $P(B)=\frac{25}{51}$
Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$
If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $
Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.
Suppose that $A, B, C$ are events such that $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ then $P\,(A + B) = $
If $A$ and $B$ are two events such that $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ and $P\,(A) = 2\,P\,(B),$ then $P\,(A) = $