$52$ पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
There are $26$ black cards in a deck of $52$ cards.
Let $P(A)$ be the probability of getting a black card in the first draw.
$\therefore $ $P(A)=\frac{26}{52}=\frac{1}{2}$
Let $\mathrm{P}(\mathrm{B})$ be the probability of getting a black card on second draw. since the card is not replaced,
$\therefore $ $P(B)=\frac{25}{51}$
Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$
दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
$A$ व $B$ दो स्वतंत्र घटनायें हैं। दोनों $A$ व $B$ के घटने की प्रायिकता $\frac{1}{6}$ है तथा उनमें से किसी के भी न घटने की प्रायिकता $\frac{1}{3}$ हैं, तो दोनों घटनाओं की प्रायिकतायें क्रमश: हैं
एक न्याय संगत पासे $(fair\,die)$ के फलकों पर संख्याएँ $1,2,3$, $4,5,6$ लिखी हुई हैं। दो व्यक्ति $A , B$ इस पासे को बारी बारी फेंकते हैं और इस खेल में प्रथम बारी $A$ की होती है। जीतने वाला व्यक्ति वह है जिसके पासे के फेंकने पर मिली संख्या उसके. प्रतिद्वंदी द्वारा पिछली बार पासा फेंकने पर मिली संख्या से विभिन्न हो। $B$ के जीतने की प्रायिकता का मान होगा :