$52$ पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
There are $26$ black cards in a deck of $52$ cards.
Let $P(A)$ be the probability of getting a black card in the first draw.
$\therefore $ $P(A)=\frac{26}{52}=\frac{1}{2}$
Let $\mathrm{P}(\mathrm{B})$ be the probability of getting a black card on second draw. since the card is not replaced,
$\therefore $ $P(B)=\frac{25}{51}$
Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$
यदि $A$ व $B$ दो घटनायें इस प्रकार हैं कि $P(A) = \frac{1}{2}$ व $P(B) = 2/3,$ तो
यदि दो घटनाओं में $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ तब $A$ तथा $B$ होंगी
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिंदी दोनों विषयों को उत्तीर्ण करने की प्रायिकता $0.5$ है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता $0.1$ है। यदि अंग्रेज़ी की परीक्षा उत्तीर्ण करने की प्रायिकता $0.75$ हो तो हिंदी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है ?
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
$52$ ताश की गड्डी में से एक पत्ता चुना जाता है, इसके बादशाह या हुकुम का पत्ता होने की प्रायिकता है