The probabilities of three events $A , B$ and $C$ are given by $P ( A )=0.6, P ( B )=0.4$ and $P ( C )=0.5$ If $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ and $P(A \cup B \cup C)=\alpha$ where $0.85 \leq \alpha \leq 0.95,$ then $\beta$ lies in the interval

  • [JEE MAIN 2020]
  • A

    $[0.36,0.40]$

  • B

    $[0.35,0.36]$

  • C

    $[0.25,0.35]$

  • D

    $[0.20,0.25]$

Similar Questions

If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.

Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is

A die is tossed thrice. Find the probability of getting an odd number at least once.

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$