$5 \times 10^{-8} \;C$ અને $-3 \times 10^{-8}\; C$ ના બે વિદ્યુતભારો એકબીજાથી $16 \,cm$ અંતરે રહેલા છે. આ બે વિદ્યુતભારોને જોડતી રેખા પરના કયા બિંદુ(ઓ)એ વિદ્યુતસ્થિતિમાન શૂન્ય છે? અનંત અંતરે સ્થિતિમાન શૂન્ય લો.
There are two charges,
$q_{1}=5 \times 10^{-8} \,C$
$q_{2}=-3 \times 10^{-8} \,C$
Distance between the two charges, $d =16 \,cm =0.16 \,m$
Consider a point $P$ on the line joining the two charges, as shown in the given figure.
$r=$ Distance of point $P$ from charge $q_{1}$ Let the electric potential $(V)$ at point $P$ be zero. Potential at point $P$ is the sum of potentials caused by charges $q_{1}$ and $q_{2}$ respectively.
Where, $\therefore V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)} \dots(i)$
$\varepsilon_{0}=$ Permittivity of free space For $V =0,$ equation $(i)$ reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{q_{1}}{r}=-\frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{5 \times 10^{-8}}{r}=-\frac{\left(-3 \times 10^{-8}\right)}{(0.16-r)}$
$\Rightarrow 5(0.16-r)=3 r$
$\Rightarrow 0.8=8 r \Rightarrow r=0.1 \,m =10 \,cm$
Therefore, the potential is zero at a distance of $10 \;cm$ from the positive charge between the charges. Suppose point $P$ is outside the system of two charges at a distance s from the negative charge, where potential is zero, as shown in the following figure.
For this arrangement, potential is given by,
Where, $V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)} \ldots (ii)$
$\varepsilon_{0}=$ Permittivity of free space For $V=0,$ equation (ii) reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{q_{1}}{s}=-\frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{5 \times 10^{-8}}{s}=-\frac{\left(-3 \times 10^{-8}\right)}{(s-0.16)}$
$\Rightarrow 5(s-0.16)=3 \,s$
$\Rightarrow 0.8=2 \,s \Rightarrow s=0.4 \,m =40\, cm$
Therefore, the potential is zero at a distance of $40 \,cm$ from the positive charge outside the system of charges.
અવકાશમાં $\vec E\, = (25 \hat i + 30 \hat j)\,NC^{-1}$ જેટલું વિદ્યુતક્ષેત્ર પ્રવર્તે છે. જો ઉગમબિંદુ આગળ વિદ્યુતક્ષેત્ર શૂન્ય હોય તો $x\, = 2\, m, y\, = 2\, m$ બિંદુ આગળ વિદ્યુતસ્થિતિમાન $volt$ માં કેટલું મળે?
એકબીજાથી $s$ અંતરે રહેલ બે પાતળી $a$ ત્રિજયાની સમઅક્ષીય રિંગ પર $+{Q}$ અને $-{Q}$ વિદ્યુતભાર છે. બે રિંગના કેન્દ્રો વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત કેટલો કેટલો થાય?
$a , b$ અને $c$ ત્રિજ્યા $[a < b < c]$ ના ત્રણ સમકેન્દ્રીય ગોળાકાર ધાતુ કવય $X , Y$ અને $Z$ ની પૃષ્ઠવિજભાર ધનતા અનુક્રમે $\sigma,-\sigma$ અને $\sigma$ છે.કવચ $X$ અને $Z$ સમાન સ્થિતિમાન ધરાવે છે. જો $X$ અને $Y$ ની ત્રિજ્યા અનુક્રમે $2\,cm$ અને $3\,cm$ હોય તો કવચ $Z$ ની ત્રિજ્યા $......\,cm$ છે.
$R=10 \mathrm{~cm}$ ત્રિજયા અને $4 \mathrm{nCm}^{-1}$ જેટલી રેખીય વીજભાર ધનતા ધરાવતી એક અર્ધ રિંગના કેન્દ્ર આગળ સ્થિતિમાન $x \pi \mathrm{V}$ છે. $x$ નું મૂલ્ય.............. છે.
$Q$ વિજભાર બે સમકેન્દ્રિય $r$ અને $R ( R > r)$ ત્રિજ્યા ધરાવતા પોલા ગોળા પર એવી રીતે પથરાયેલ છે કે જેથી બંને ગોળા પરની પૃષ્ઠ વિજભાર ઘનતા સમાન રહે. બંનેના સમાન કેન્દ્ર આગળ વિદ્યુતસ્થિતિમાન કેટલું મળે?