Two charges each equal to $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ are placed at the corners of an equilateral triangle of side $a$. The electric field at the third corner is ${E_3}$ where $({E_0} = q/4\pi {\varepsilon _0}{a^2})$
${E_3} = {E_0}$
${E_3} < {E_0}$
${E_3} > {E_0}$
${E_3} \ge {E_0}$
Diagram shows symmetrically placed rectangular insulators with uniformly charged distributions of equal magnitude. At the origin, the net field net ${\vec E_{net}}$ is :-
An oil drop carries six electronic charges, has a mass of $1.6 \times 10^{-12} g$ and falls with a terminal velocity in air. The magnitude of vertical electrical electric field required to make the drop move upward with the same speed as was formely moving is ........$kN/C$
Two point charges $Q$ and $-3Q$ are placed at some distance apart. If the electric field at the location of $Q$ is $E$ then at the locality of $ - 3Q$, it is
Two charged particles, each with a charge of $+q$, are located along the $x$ -axis at $x = 2$ and $x = 4$, as shown below. Which of the following shows the graph of the magnitude of the electric field along the $x$ -axis from the origin to $x = 6$?
Whose result the whole electrostatic is ?