- Home
- Standard 12
- Physics
Figure shows a rod ${AB}$, which is bent in a $120^{\circ}$ circular arc of radius $R$. A charge $(-Q)$ is uniformly distributed over rod ${AB}$. What is the electric field $\overrightarrow{{E}}$ at the centre of curvature ${O}$ ?

$\frac{3 \sqrt{3} {Q}}{8 \pi \varepsilon_{0} {R}^{2}}(\hat{{i}})$
$\frac{3 \sqrt{3} Q}{8 \pi^{2} \varepsilon_{0} R^{2}}(\hat{i})$
$\frac{3 \sqrt{3} Q}{16 \pi^{2} \varepsilon_{0} R^{2}}(\hat{i})$
$\frac{3 \sqrt{3} Q}{8 \pi^{2} \varepsilon_{0} R^{2}}(-\hat{i})$
Solution
$\varepsilon=\frac{2 {k} \lambda}{{R}} \sin \left(\frac{\theta}{2}\right)(-\hat{{i}})$
$\lambda=\left(\frac{-{Q}}{{R} \theta}\right)=\left(\frac{-{Q}}{{R} \cdot \frac{2 \pi}{3}}\right)$
$\lambda=\frac{-3 Q}{2 \pi R}$
$\varepsilon=\frac{2 k}{R} \cdot \frac{-3 Q}{2 \pi R} \cdot \sin \left(60^{\circ}\right)(-\hat{i})$
$\varepsilon=\frac{3 \sqrt{3} Q}{8 \pi^{2} \in_{0} R^{2}}(+\hat{i})$