Two concentric conducting thin spherical shells of radii $a$ and $b\  (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by

  • A
    818-a2
  • B
    818-b2
  • C
    818-c2
  • D
    818-d2

Similar Questions

A spherical conductor of radius $12 \;cm$ has a charge of $1.6 \times 10^{-7} \;C$ distributed uniformly on its surface. What is the electric field

$(a)$ inside the sphere

$(b)$ just outside the sphere

$(c)$ at a point $18\; cm$ from the centre of the sphere?

The dimensions of an atom are of the order of an Angstrom. Thus there must be large electric fields between the protons and electrons. Why, then is the electrostatic field inside a conductor zero ?

A sphere of radius $R$ has a uniform distribution of electric charge in its volume. At a distance $x$ from its centre, for $x < R$, the electric field is directly proportional to

  • [AIIMS 1997]

Consider $a$ uniformly charged hemispherical shell of radius $R$ and charge $Q$ . If field at point $A (0, 0, -z_0)$ is $ \vec E$ then field at point $(0, 0, z_0)$ is $[z_0 < R]$ 

Explain by graph how the electric field by thin spherical shell depends on the distance of point from centre.