दो पासे फेंके जाते हैं। घटनाएँ $A , B$ और $C$ निम्नलिखित प्रकार से हैं

$A$ : पहले पासे पर सम संख्या प्राप्त होना

$B$ : पहले पासे पर विषम संख्या प्राप्त होना

$C :$ पासों पर प्राप्त संख्याओं का योग $\leq 5$ होना

निम्नलिखित घटनाओं का वर्णन कीजिए

$A$ या $B$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When two dice are thrown, the sample space is given by

$s =\{(x, y): x, y=1,2,3,4,5,6\}$
$=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right]$

Accordingly,

$A =\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$B =\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3) \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$

$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$

$A$ or $B =A \cup B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=S$

Similar Questions

एक पांसे को फेंकने पर $7$ से कम संख्या आने की प्रायिकता है

एक कॉलोनी में तीन मकान उपलब्ध हैं और तीन व्यक्ति मकानों के लिये निवेदन करते हैं। प्रत्येक दूसरे से परामर्श के बिना निवेदन करता हैं। तीनों एक ही मकान के लिये निवेदन करते हैं इसकी प्रायिकता है

  • [AIEEE 2005]

एक ताश की अच्छी तरह से फेटी गयी गड्डी में से दो ताश यदृच्छया बिना प्रतिस्थापन के निकाले जाते हैं। उनमें से एक पान का पत्ता होने की प्रायिकता है

यदि $E$ और $F$ ऐसी घटनायें हैं जिनके लिये $P\,(E) \le P\,(F)$ और $P\,(E \cap F) > 0$ हो, तो

  • [IIT 1998]

एक कॉलेज में $25\%$ छात्र तथा $10\%$ छात्रायें गणित विषय लेती हैं। कुल विद्यार्थियों की संख्या की $60\%$ छात्रायें है। गणित पढ़ने वाले एक विद्याथि का यादृच्छिक रूप से चयन करने पर, उसके छात्रा होने की प्रायिकता है