निम्नलिखित में सत्य या असत्य बताइए ( अपने उत्तर का कारण दीजिए )
$A :$ पहले पासे पर सम संख्या प्राप्त होना
$B$ : पहले पासे पर विषम संख्या प्राप्त होना
$C :$ पासों पर प्राप्त संख्याओं का योग $\leq 5$ होना
$A$ और $B$ परस्पर अपवर्जी हैं।
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap B=\phi$
$\therefore A$ and $B$ are mutually exclusive.
Thus, the given statement is true.
मान लीजिए कि बल्बों के एक ढेर में से $3$ बल्ब यादृच्छया निकाले जाते हैं। प्रत्येक बल्ब को जाँचा जाता है और उसे खराब $(D)$ या ठीक $(N)$ में वर्गीकृत करते हैं। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
एक डिब्बे में $10$ अच्छी तथा $6$ खराब वस्तुएँ हैं। एक वस्तु का यादृच्छिक चयन किया गया है। इसके अच्छा अथवा खराब होने की प्रायिकता है
एक थैले में $9$ डिस्क हैं जिनमें से $4$ लाल रंग की, $3$ नीले रंग की और $2$ पीले रंग की हैं। डिस्क आकार एवं माप में समरूप हैं। थैले में से एक डिस्क यादृच्छया निकाली जाती है। प्रायकिता ज्ञात कीजिए कि निकाली गई डिस्क नीले रंग की है
दो धनात्मक संख्याओं का योग $100$ है। उनका गुणनफल $1000$ से अधिक होने की प्रायिकता है
दो पांसे साथ-साथ फेंके जाते हैं। योग $11$ से कम आने की प्रायिकता है