Two dice are thrown. The events $A,\, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
State true or false $:$ (give reason for your answer)
Statement : $A$ and $B$ are mutually exclusive
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap B=\phi$
$\therefore A$ and $B$ are mutually exclusive.
Thus, the given statement is true.
The probability that an ordinary or a non-leap year has $53$ sunday, is
In a simultaneous throw of three coins, what is the probability of getting at least $2$ tails
Describe the sample space for the indicated experiment: A coin is tossed three times.
A bag contains $5$ white, $7$ red and $8$ black balls. If four balls are drawn one by one without replacement, what is the probability that all are white
The probability that a leap year will have $53$ Fridays or $53$ Saturdays is