Two dice are thrown. The events $A,\, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

State true or false $:$ (give reason for your answer)

Statement : $A=B^{\prime}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$

$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$

It is observed that

$B^{\prime}=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3), \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=A$

Thus, the given statement is true.

Similar Questions

A bag contains $3$ white, $3$ black and $2$ red balls. One by one three balls are drawn without replacing them. The probability that the third ball is red, is

Three coins are tossed once. Find the probability of getting atleast $2$ heads.

From a pack of $52$ cards one card is drawn at random, the probability that it is either a king or a queen is

Three coins are tossed once. Find the probability of getting no tails.

Cards are drawn one by one without replacement from a pack of $52$ cards. The probability that $10$ cards will precede the first ace is