બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A =B'$
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that
$B^{\prime}=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3), \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=A$
Thus, the given statement is true.
એક પ્રયોગમાં એક પાસો ફેંકવામાં આવે છે અને જો પાસા ઉપર યુગ્મ સંખ્યા મળે તો એક સિક્કો એક વાર ઉછાળવામાં આવે છે. જો પાસા ઉપર અયુગ્મ સંખ્યા મળે તો સિક્કાને બે વાર ઉછાળે છે. આ પ્રયોગનો નિદર્શાવકાશ લખો.
જો $A$ અને $B$ બે સ્વત્રંત ઘટનાઓ છે કે જેથી $P\,(A \cap B') = \frac{3}{{25}}$ અને $P\,(A' \cap B) = \frac{8}{{25}},$ તો $P(A) = $
ગણિતનો એક દાખલો ત્રણ વિર્ધાર્થીં $A, B$ અને $C$ ને આપવામાં આવે છે. તેને ઉકેલવાની સંભાવના અનુક્રમે $1/2, 1/3, 1/4 $ હોય, તો દાખલો ઉકેલવાની સંભાવના કેટલી થાય ?
બે પાસાઓ (એક વાદળી અને બીજો લાલ)ને ફેંકવાના પ્રયોગ સાથે સંકળાયેલ નિદર્શાવકાશ શોધો. વળી, આ નિદર્શાવકાશના ઘટકોની સંખ્યા શોધો.
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા $B $ ના તરત પહેલાં જ કરી ?