Two electric charges $12\,\mu C$ and $ - 6\,\mu C$ are placed $20\, cm$ apart in air. There will be a point $P$ on the line joining these charges and outside the region between them, at which the electric potential is zero. The distance of $P$ from $ - 6\,\mu C$ charge is.......$m$
$0.10$
$0.15 $
$0.20 $
$0.25$
A uniform electric field of $20\, N/C$ exists along the $x$ -axis in a space. The potential difference $(V_B -V_A)$ for the point $A(4\,m, 2\,m)$ and $B(6\,m, 5\,m)$ is.....$V$
Two large vertical and parallel metal plates having a separation of $1 \ cm$ are connected to a $DC$ voltage source of potential difference $X$. A proton is released at rest midway between the two plates. It is found to move at $45^{\circ}$ to the vertical $JUST$ after release. Then $X$ is nearly
Draw a graph showing variation of potential with $r$ distance for a uniformly charged spherical shell.
A charge of total amount $Q$ is distributed over two concentric hollow spheres of radii $r$ and $R ( R > r)$ such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is
In a certain charge distribution, all points having zero potential can be joined by a circle $S$. Points inside $S$ have positive potential and points outside $S$ have negative potential. A positive charge, which is free to move, is placed inside $S$