Two electrons are moving along parallel lines unidirectionarly with same velocity they will
Repel each other
Atterect each other
Not apply any force on each other
None
An electron beam passes through a magnetic field of $2 \times 10^{-3}\,Wb/m^2$ and an electric field of $1.0 \times 10^4\,V/m$ both acting simultaneously. The path of electron remains undeviated. The speed of electron if the electric field is removed, and the radius of electron path will be respectively
A particle is projected with a velocity ( $10\ m/s$ ) along $y-$ axis from point $(2, 3)$ . Magnetic field of $\left( {3\hat i + 4\hat j} \right)$ Tesla exist uniformly in the space. Its speed when particle passes through $y-$ axis for the third time is : (neglect gravity)
A particle of charge per unit mass $\alpha$ is released from origin with a velocity $\bar{v}=v_0 \vec{i}$ in a uniform magnetic field $\bar{B}=-B_0 \hat{k}$. If the particle passes through $(0, y, 0)$ then $y$ is equal to
An electron having a charge e moves with a velocity $v$ in positive $x$ direction. A magnetic field acts on it in positive $y$ direction. The force on the electron acts in (where outward direction is taken as positive $z$-axis).
Two protons move parallel to each other, keeping distance $r$ between them, both moving with same velocity $\vec V\,$. Then the ratio of the electric and magnetic force of interaction between them is