Two electrons are moving with same speed $v$. One electron enters a region of uniform electric field while the other enters a region of uniform magnetic field. Then after some time if the de-broglie wavelength of the two are ${\lambda _1}$ and ${\lambda _2}$  then

  • A

    ${\lambda _1} = {\lambda _2}$

  • B

    ${\lambda _1} > {\lambda _2}$

  • C

    ${\lambda _1} < {\lambda _2}$

  • D

    Depends on direction of electric field

Similar Questions

An electron is constrained to move along the $y-$axis with a speed of $0.1\, c$ (c is the speed of light) in the presence of electromagnetic wave, whose electric field is $\overrightarrow{ E }=30 \hat{ j } \sin \left(1.5 \times 10^{7} t -5 \times 10^{-2} x \right)\, V / m$ The maximum magnetic force experienced by the electron will be: (given $c=3 \times 10^{8}\, ms ^{-1}$ and electron charge $\left.=1.6 \times 10^{-19} C \right)$

  • [JEE MAIN 2020]

The electric fields of two plane electromagnetic plane waves in vacuum are given by

$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and

$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$

At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is 

  • [JEE MAIN 2020]

An electromagnetic wave of frequency $3\, GHz$ enters a dielectric medium of relative electric permittivity $2.25$ from vacuum. The wavelength of this wave in that medium will be $.......\,\times 10^{-2} \, cm$

  • [JEE MAIN 2021]

The magnetic field vector of an electromagnetic wave is given by ${B}={B}_{o} \frac{\hat{{i}}+\hat{{j}}}{\sqrt{2}} \cos ({kz}-\omega {t})$; where $\hat{i}, \hat{j}$ represents unit vector along ${x}$ and ${y}$-axis respectively. At $t=0\, {s}$, two electric charges $q_{1}$ of $4\, \pi$ coulomb and ${q}_{2}$ of $2 \,\pi$ coulomb located at $\left(0,0, \frac{\pi}{{k}}\right)$ and $\left(0,0, \frac{3 \pi}{{k}}\right)$, respectively, have the same velocity of $0.5 \,{c} \hat{{i}}$, (where ${c}$ is the velocity of light). The ratio of the force acting on charge ${q}_{1}$ to ${q}_{2}$ is :-

  • [JEE MAIN 2021]

A plane EM wave is propagating along $\mathrm{x}$ direction. It has a wavelength of $4 \mathrm{~mm}$. If electric field is in y direction with the maximum magnitude of $60 \mathrm{Vm}^{-1}$, the equation for magnetic field is:$7$

  • [JEE MAIN 2024]