Two equal point charges are fixed at $x = -a$ and $x = + \,a$ on the $x$-axis. Another  point charge $Q$ is placed at the origin. The change in the electrical potential energy of $Q$ ehen it is displaced by a small distance $x$ along the $x$ -axis is apporximately proportional to

  • A

    $x$

  • B

    $x^2$

  • C

    $x^3$

  • D

    $1/x$

Similar Questions

A point charge $q$ is placed at a distance $\frac{a}{2}$ directly above the centre of a  square of side $a$ . The electric flux through the square is

Two condensers, one of capacity $C$ and the other of capacity $\frac{C}{2}$ , are connected to a $V\, volt$ battery, as shown. The work done in charging fully both the condensers is

Two identical balls having like charges and placed at a certain distance apart repel each other with a certain force. They are brought in contact and then moved apart to distance equal to half their initial separation. The force of repulsion between them increases $4.5\,times$ in comparison with the initial value. The ratio of the initial charges of the balls is

A hollow conducting sphere is placed in an electric field produced by a point charge placed at $P$ as shown in figure. Let $V_A, V_B, V_C$ be the potentials at points $A, B$ and $C$ respectively. Then

Electric field at a place is $\overrightarrow E  = {E_0}\widehat i\,\,V/m$. A particle of charge $+q_0$ moves from point $A$  to $B$ along a circular path find work done in this motion by electric field :-