- Home
- Standard 11
- Physics
બે કાલ્પનિક $m_1$ અને $m_2$ દળ ધરાવતા ગ્રહ એક બીજાથી અનંત અંતરે છે.હવે ગુરુત્વાકર્ષણને કારણે તેમના કેન્દ્રને જોડતી રેખા પર તે એકબીજા તરફ ગતિ કરે છે.જ્યારે તેમની વચ્ચેનું અંતર $d$ હોય ત્યારે તેમની ઝડપ કેટલી હશે? ($m_1$ ની ઝડપ $v_1$ અને $m_2$ ની ઝડપ $v_2$ છે)

$v_1 = v_2$
$\begin{array}{l} {v_1}{\mkern 1mu} = {\mkern 1mu} {m_2}{\mkern 1mu} \sqrt {\frac{{2G}}{{d({m_1} + {m_2})}}} \\ {v_2}{\mkern 1mu} = {\mkern 1mu} {m_1}{\mkern 1mu} \sqrt {\frac{{2G}}{{d({m_1} + {m_2})}}} \end{array}$
$\begin{array}{l} {v_1}{\mkern 1mu} = {\mkern 1mu} {m_1}{\mkern 1mu} \sqrt {\frac{{2G}}{{d({m_1} + {m_2})}}} \\ {v_2}{\mkern 1mu} = {\mkern 1mu} {m_2}{\mkern 1mu} \sqrt {\frac{{2G}}{{d({m_1} + {m_2})}}} \end{array}$
$\begin{array}{l} {v_1}\, = \,{m_2}\,\sqrt {\frac{{2G}}{{{m_1}}}} \\ {v_2}\, = \,{m_2}\,\sqrt {\frac{{2G}}{{{m_2}}}} \end{array}$
Solution
We choose reference point, infinity, where total energy of the system is zero.
So initial energy of the system $=0$
Final energy
$ = \frac{1}{2}{m_1}v_1^2 + \frac{1}{2}{m_2}v_2^2=\frac{{G{m_1}{m_2}}}{d}$
From conservation of energy,
$Initial\, energy=Final\, energy$
$\therefore 0 = \frac{1}{2}{m_1}v_1^2 + \frac{1}{2}{m_2}v_2^2 = \frac{{G{m_1}{m_2}}}{d}$
$or\,\frac{1}{2}{m_1}v_1^2 + \frac{1}{2}{m_1}v_2^2 = \frac{{G{m_1}{m_2}}}{d}\,\,…\left( i \right)$
By conservation of linear momentum
${m_1}{v_1} + {m_2}{v_2} = 0$
$or\,\frac{{{v_1}}}{{{v_2}}} = \frac{{{m_2}}}{{{m_1}}} \Rightarrow {v_2} = – \frac{{{m_1}}}{{{m_2}}}{v_1}$
Putting value of $v_2$ in equation $(1)$, we get
${m_1}v_1^2 + {m_2}{\left( { – \frac{{{m_1}{v_1}}}{{{m_2}}}} \right)^2} = \frac{{2G{m_1}{m_2}}}{d}$
$\frac{{{m_1}{m_2}v_1^2 + m_1^2v_1^2}}{{{m_2}}} = \frac{{2G{m_1}{m_2}}}{d}$
${v_1} = \sqrt {\frac{{2Gm_2^2}}{{d\left( {{m_1} + {m_2}} \right)}}} = {m_2}\sqrt {\frac{{2G}}{{d\left( {{m_1} + {m_2}} \right)}}} $
$Similarly\,{v_2} = {m_1}\sqrt {\frac{{2G}}{{d\left( {{m_1} + {m_2}} \right)}}} $