1. Electric Charges and Fields
hard

બે એકસમાન દરેક $Q$ એવા ધન વિદ્યુતભારોને એકબીજાથી $‘2a’$ જેટલા અંતરે દૂર મૂકવામાં આવ્યા છે. બીજા $m$ દળ ધરાવતો અને $q_0$ જેટલા એક બિંદુવત્ત વિદ્યુતભારને બે જડિત વિદ્યુતભારોની વચ્યે મૂકવામાં આવ્યા છે. બે વિદ્યુતભારોને જોડતી રેખા ઉપર $q_0$ વિદ્યુતભારનો આવર્તકાળ .......... હશે.

A

$\sqrt{\frac{4 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}$

B

$\sqrt{\frac{q_{0} Q}{4 \pi^{3} \varepsilon_{0} m a^{3}}}$

C

$\sqrt{\frac{2 \pi^{2} \varepsilon_{0} m a^{3}}{q_{0} Q}}$

D

$\sqrt{\frac{8 \pi^{3} \varepsilon_{0} m \alpha^{3}}{q_{0} Q}}$

(JEE MAIN-2022)

Solution

$m \operatorname{acc}^{ n }=\frac{ KQq _{0}[2 a ][2 x ]}{\left( a ^{2}- x ^{2}\right)^{2}}$

$\Rightarrow \operatorname{acc}^{ n } \approx\left(\frac{4 kQq _{0}}{ ma ^{3}}\right) x$

$T =2 \pi \sqrt{\frac{\pi \varepsilon_{0} ma ^{3}}{ Qq _{0}}}$

$T =\sqrt{\frac{4 \pi^{3} \varepsilon_{0} ma ^{3}}{ Qq _{0}}}$

Standard 12
Physics

Similar Questions

$\mathrm{SI/MKS}$ ઉપરાંત બીજી ઉપયોગી એકમ પદ્ધતિ છે. જેને $\mathrm{CGS}$ (સેમી ગ્રામ સેકન્ડ) પદ્ધતિ કહે છે. આ પદ્ધતિમાં કુલંબનો નિયમ $\vec F = \frac{{Qq}}{{{r^2}}} \cdot \hat r$ છે. જ્યાં અંતર $\mathrm{r}$ એ $cm\left( { = {{10}^{ – 2}}m} \right)$ માં માપેલ છે. બળ $\mathrm{F}$ એ ડાઇન $\left( { = {{10}^{ – 5}}N} \right)$ અને વિધુતભાર $\mathrm{esu}$ માં છે, જ્યાં $1$ $\mathrm{esu}$ વિધુતભાર $ = \frac{1}{{[3]}} \times {10^{ – 9}}C$ છે અને ${[3]}$ એ ખરેખર શુન્યાવકાશમાં પ્રકાશના વેગ પરથી આવેલ છે અને તેને સારી રીતે $c = 2.99792458 \times {10^8}m/s$ વડે આપેલો છે અને તેનું આશરે મૂલ્ય $c = 3 \times {10^8}m/s$ છે.

$(i)$ બતાવો કે કુલંબનો નિયમ $\mathrm{CGS}$ એકમ પદ્ધતિમાં $1$ $\mathrm{esu}$ વિધુતભાર $= 1$ (ડાઇન) $^{1/2}$ મળે છે. વિધુતભારના એકમના પરિમાણને દળ $\mathrm{M}$, લંબાઈ $\mathrm{L}$ અને સમય $\mathrm{T}$ ના પદમાં અને બતાવો કે તે $\mathrm{M}$ અને $\mathrm{L}$ ના આંશિક પાવરથી અપાય છે.

$(ii)$ $1$ $\mathrm{esu}$ વિધુતભાર $=xC$, જ્યાં $x$ એ પરિમાણરહિત સંખ્યા છે. બતાવો કે તે $\frac{1}{{4\pi { \in _0}}} = \frac{{{{10}^{ – 9}}}}{{{x^2}}}\frac{{N{m^2}}}{{{C^2}}}$ વડે અપાય છે. જ્યાં $x = \frac{1}{{[3]}} \times {10^{ – 9}}$ અને $\frac{1}{{4\pi { \in _0}}} = {[3]^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ ખરેખર $\frac{1}{{4\pi { \in _0}}} = {\left( {2.99792458} \right)^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$.

medium

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.