કુલંબના નિયમના સદિશ સ્વરૂપની કેટલીક નોંધપાત્ર બાબતો લખો.
$\overrightarrow{ F _{21}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{21}^{2}} \cdot \hat{r}_{21}$
આ સૂત્ર $q_{1}$ અને $q_{2}$ ના ધન કે ઋણ એમ બંને ચિહ્ન માટે સાચું છે.
જો $q_1$ અને $q_2$ના ઘન કે ઋણ હોય, તો $\overrightarrow{ F _{21}}$ અને $\overrightarrow{r_{21}}$ ની દિશામાં જ છે જે અપાકર્ષણ દર્શાવે છે.(સજાતીય વિદ્યુતભારો)
જો $q_{1}$ અને $q_{2}$ બંને વિજાતીય વિદ્યુતભારો હોય, તો $\vec{F}_{21}$ એ $\hat{r}_{21}\left(=-\hat{r}_{12}\right)$ દિશામાં છે જે આકર્ષણ દર્શાવે છે.
ઉપરના સમીકરણ $(1)$ માં $1$ અને $2$ ને અદલાબદલી કરતાં $\overrightarrow{F_{12}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}=-\overrightarrow{F_{21}}$ મળે છે. કુલંબનો નિયમ એ ન્યૂટનના ગતિના ત્રીજા નિયમ સાથે સુસંગત છે.
જો બે વિદ્યુતભારોને કોઈ દ્રવ્યમાં મૂકવામાં આવે તો તેમની વચ્ચે લાગતું બળ એ દ્રવ્યના ડાઈઈલેક્ટ્રિક અચળાંકના ભાગનું થાય છે એટલે કुલંબ બળ ધટે છે.
કુલંબ બળો એ કેન્દ્રીય બળો છે એટલે બે વિદ્યુતભારોને જોડતી રેખા પર તેમના કેન્દ્રમાંથી પસાર થાય છે.
કુલંબનો નિયમ એ વ્યસ્ત વર્ગનો નિયમ છે.
આ નિયમ અનુસાર વિદ્યુતબળ, આકર્ષણ અને અપારર્ષણு એમ બે પ્રકારનું હોય છે.
કોઈ પણ બે વિદ્યુતભારો પર લાગતાં બળ પર ત્રીજા વિદ્યુતભારની અસર થતી નથી. આથી, કુલંબ બળને $two\,body\,force$ કહે છે.
$ke ^{2} / G m _{ e } m _{ p }$ ગુણોત્તર પરિમાણરહિત છે તેમ ચકાસો. ભૌતિક અચળાંકો ધરાવતા કોષ્ટકમાં જુઓ અને આ ગુણોત્તરનું મૂલ્ય શોધો. આ ગુણોત્તર શું સૂચવે છે?
હવામાં $r$ અંતરે રહેલા બે વિદ્યુતભાર પર લાગતું બળ $F$ છે.હવે $k$ ડાઇઇલેકિટ્રક ધરાવતા માધ્યમ મૂકવાથી લાગતું બળ કેટલું થાય?
ત્રણ વિદ્યુતભારો $ - {q_1},\,\, + {q_2}$ અને $ - {q_3}$ ને આકૃતિમાં બતાવ્યા પ્રમાણે મૂકવામાં આવ્યા છે. $- q_1$ વિદ્યુતભાર પર લાગતા બળનો $X$ ઘટક કોના સપ્રમાણમાં હોય?
બે સમાન મૂલ્યના $q$ વિદ્યુતભારો $x$ અક્ષ પર $2a$ અંતરે આવેલા છે. $m$ દળના બીજો $q$ વિદ્યુતભારને બે વિદ્યુતભારની વચ્ચેના માર્ગ (પથ) પર મૂકેલ છે. જો આ વિદ્યુતભાર સમતુલન સ્થિતિથી $x$ અંતરે સ્થાન બદલે તો કણ .........
દરેક $+q$ જેટલો વિદ્યાતભાર ધરાવતા બે નાના ગોળાઓ એક $2a$ લંબાઈની અવાહક દોરીથી જોડેલા છે તો દોરીમાં તણાવબળ કેટલું હશે?