- Home
- Standard 12
- Physics
કુલંબના નિયમના સદિશ સ્વરૂપની કેટલીક નોંધપાત્ર બાબતો લખો.
Solution
$\overrightarrow{ F _{21}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{21}^{2}} \cdot \hat{r}_{21}$
આ સૂત્ર $q_{1}$ અને $q_{2}$ ના ધન કે ઋણ એમ બંને ચિહ્ન માટે સાચું છે.
જો $q_1$ અને $q_2$ના ઘન કે ઋણ હોય, તો $\overrightarrow{ F _{21}}$ અને $\overrightarrow{r_{21}}$ ની દિશામાં જ છે જે અપાકર્ષણ દર્શાવે છે.(સજાતીય વિદ્યુતભારો)
જો $q_{1}$ અને $q_{2}$ બંને વિજાતીય વિદ્યુતભારો હોય, તો $\vec{F}_{21}$ એ $\hat{r}_{21}\left(=-\hat{r}_{12}\right)$ દિશામાં છે જે આકર્ષણ દર્શાવે છે.
ઉપરના સમીકરણ $(1)$ માં $1$ અને $2$ ને અદલાબદલી કરતાં $\overrightarrow{F_{12}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}=-\overrightarrow{F_{21}}$ મળે છે. કુલંબનો નિયમ એ ન્યૂટનના ગતિના ત્રીજા નિયમ સાથે સુસંગત છે.
જો બે વિદ્યુતભારોને કોઈ દ્રવ્યમાં મૂકવામાં આવે તો તેમની વચ્ચે લાગતું બળ એ દ્રવ્યના ડાઈઈલેક્ટ્રિક અચળાંકના ભાગનું થાય છે એટલે કुલંબ બળ ધટે છે.
કુલંબ બળો એ કેન્દ્રીય બળો છે એટલે બે વિદ્યુતભારોને જોડતી રેખા પર તેમના કેન્દ્રમાંથી પસાર થાય છે.
કુલંબનો નિયમ એ વ્યસ્ત વર્ગનો નિયમ છે.
આ નિયમ અનુસાર વિદ્યુતબળ, આકર્ષણ અને અપારર્ષણு એમ બે પ્રકારનું હોય છે.
કોઈ પણ બે વિદ્યુતભારો પર લાગતાં બળ પર ત્રીજા વિદ્યુતભારની અસર થતી નથી. આથી, કુલંબ બળને $two\,body\,force$ કહે છે.