दो अनंत लम्बाई की समानान्तर चालक पट्टिकायें (प्लेट्स) जिनके सतही आवेश घनत्व क्रमश : $ + \sigma $ और $ - \sigma $ हैं, एक थोड़ी दूरी के अंतराल पर रखी हैं। इन पट्टिकाओं के बीच का माध्यम निर्वात है। अगर निर्वात का परावैद्युतांक ${\varepsilon _0}$ है, तो पट्टिकाओं के बीच विद्युत क्षेत्र का मान है

  • [AIIMS 2005]
  • A

    $0$ वोल्ट/मीटर

  • B

    $\frac{\sigma }{{2{\varepsilon _o}}}$ वोल्ट/मीटर

  • C

    $\frac{\sigma }{{{\varepsilon _o}}}$ वोल्ट/मीटर

  • D

    $\frac{{2\sigma }}{{{\varepsilon _o}}}$ वोल्ट/मीटर

Similar Questions

प्रति इकाई आवेश $q$ वाले अनन्त लम्बी नली का उसकी अक्ष से $r$ दूरी पर वैद्युत क्षेत्र की तीव्रता होती है

यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :

  • [JEE MAIN 2015]

एक $R$ त्रिज्या के गोले में समान घनत्व $\rho$ का आवेश वितरित है। यदि इस गोले से $\frac{ R }{2}$ त्रिज्या का एक गोला काटकर चित्रानुसार निकाल दिया जाय तो बचे हुए भाग के कारण बिन्दु ओं $A$ तथा $B$ पर विधुत क्षेत्र (क्रमशः $\overrightarrow{ E }_{ A }$ तथा $\overrightarrow{ E }_{ B }$ ) के मान का अनुपात $\frac{\left|\overrightarrow{ E }_{ A }\right|}{\left|\overrightarrow{ E }_{ B }\right|}$ होगा।

  • [JEE MAIN 2020]

विभिन्न आवेश वितरणों (charge distributions) से उत्पन्न होनेवाले विद्युत क्षेत्र (electric field) $E$ का एक बिंदु $P(0,0, d)$ पर मापन किया जाता है और इस विद्युत् क्षेत्र $E$ की $d$ पर निर्भरता अलग-अलग पायी जाती है। सूची-$I$ में $E$ और $d$ के बीच मे अलग-अलग सम्बन्ध (relations) दिये गये हैं। सूची-$II$ विभिन्न प्रकार के आवेश वितरणों और उनके स्थानों को बताती हैं। सूची-$I$ के फलनों का सूची-$II$ से सम्बंधित आवेश वितरणों से सुमेल कीजिये।

 सूची-$I$  सूची-$II$
$E$ पर निर्भर नहीं करता है $1.$ मूल बिंदु (origin) पर बिंदु आवेश (point charge) $Q$
$E \propto \frac{1}{d}$ $2.$ एक लघु द्विध्रुव (small dipole) जिसका बिंदु आवेश $Q$ जो $(0,0, l)$ पर है और $-Q$ जो $(0,0,-l)$ पर है। मानिए $2 l \ll d$
$E \propto \frac{1}{d^2}$ $3.$ अनंत (infinite) लम्बाई का एकसमान रेखीय आवेश घनत्व (uniform linear charge density) $\lambda$ वाला तार जो $x$ अक्ष से सम्पाती (coincident) है
$E \propto \frac{1}{d^3}$ $4.$ अनंत लम्बाई के एकसमान रेखीय आवेश घनत्व वाले दो तार जो $x$-अक्ष के समांतर हैं। $(y=0, z=l)$ वाले तार पर $+\lambda$ आवेश घनत्व है तथा $(y=0, z=-l)$ वाले तार पर $-\lambda$ आवेश घनत्व है। मानिए $2 l \ll d$
  $5.$ एकसमान आवेश घनत्व (uniform surface charge density) का अनंत समतल चादर (infinite plane sheet) जो $x y$-तल से सम्पाती है

  • [IIT 2018]

त्रिज्या $R$ और कुल आवेश $Q$ वाले एक ठोस गोले पर आवेश घनत्व वितरण $P(r)=\frac{Q}{\pi R^{4}} r,$ गोले के केन्द्र से $r_{1}$ दूरी पर गोले के अन्दर एक बिन्दु $'p'$ पर विघुत क्षेत्र का परिमाण है :

  • [AIEEE 2009]