Two ions having masses in the ratio $1 : 1$ and charges $1 : 2$ are projected into uniform magnetic field perpendicular to the field with speeds in the ratio $2 : 3$. The ratio of the radii of circular paths along which the two particles move is
$4:3$
$2:3$
$3:1$
$1:4$
An electron having kinetic energy $T$ is moving in a circular orbit of radius $R$ perpendicular to a uniform magnetic induction $\vec B$ . If kinetic energy is doubled and magnetic induction tripled, the radius will become
The magnetic force depends on $\mathrm{v}$ which depends on the inertial frame of reference. Does then the magnetic force differ from inertial frame to frame ? Is it reasonable that the net acceleration has a different value in different frames of reference ?
The radius of curvature of the path of a charged particle moving in a static uniform magnetic field is
A charged particle with specific charge $S$ moves undeflected through a region of space containing mutually perpendicular uniform electric and magnetic fields $E$ and $B$ . When electric field is switched off, the particle will move in a circular path of radius
The electron in the beam of a television tube move horizontally from south to north. The vertical component of the earth's magnetic field points down. The electron is deflected towards