A proton, a deuteron and an $\alpha-$particle with same kinetic energy enter into a uniform magnetic field at right angle to magnetic field. The ratio of the radii of their respective circular paths is

  • [JEE MAIN 2022]
  • A

    $1: \sqrt{2}: \sqrt{2}$

  • B

    $1: 1: \sqrt{2}$

  • C

    $\sqrt{2}: 1: 1$

  • D

    $1: \sqrt{2}: 1$

Similar Questions

An electron enters a region where magnetic $(B)$ and electric $(E)$ fields are mutually perpendicular to one another, then

A charged particle moves in a magnetic field $\vec B = 10\,\hat i$ with initial velocity $\vec u = 5\hat i + 4\hat j$ The path of the  particle will be

A proton with a kinetic energy of $2.0\,eV$ moves into a region of uniform magnetic field of magnitude $\frac{\pi}{2} \times 10^{-3}\,T$. The angle between the direction of magnetic field and velocity of proton is $60^{\circ}$. The pitch of the helical path taken by the proton is $..........cm$ (Take, mass of proton $=1.6 \times 10^{-27}\,kg$ and Charge on proton $=1.6 \times 10^{-19}\,kg)$

  • [JEE MAIN 2023]

A uniform magnetic field $B$ and a uniform electric field $E$ act in a common region. An electron is entering this region of space. The correct arrangement for it to escape undeviated is

Two ions have equal masses but one is singly ionized and second is doubly ionized. They are projected from the same place in a uniform transverse magnetic field with same velocity then:
$(a)$ Both ions will go along circles of equal radii
$(b)$ The radius of circle described by the single ionized charge is double of radius of circle described by doubly ionized charge
$(c)$ Both circle do not touches to each other
$(d)$ Both circle touches to each other