Two ions having same mass have charges in the ratio $1: 2$. They are projected normally in a uniform magnetic field with their speeds in the ratio $2: 3$. The ratio of the radii of their circular trajectories is -

  • [JEE MAIN 2021]
  • A

    $4: 3$

  • B

    $3: 1$

  • C

    $2: 3$

  • D

    $1: 4$

Similar Questions

A particle with charge $+Q$ and mass m enters a magnetic field of magnitude $B,$ existing only to the right of the boundary $YZ$. The direction of the motion of the $m$ particle is perpendicular to the direction of $B.$ Let $T = 2\pi\frac{m}{{QB}}$ . The time spent by the particle in the field will be 

An electron is allowed to move with constant velocity along the axis of current carrying straight solenoid.

$A.$ The electron will experience magnetic force along the axis of the solenoid.

$B.$ The electron will not experience magnetic force.

$C.$ The electron will continue to move along the axis of the solenoid.

$D.$ The electron will be accelerated along the axis of the solenoid.

$E.$ The electron will follow parabolic path-inside the solenoid.

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]

A positive, singly ionized atom of mass number $A_M$ is accelerated from rest by the voltage $192 V$. Thereafter, it enters a rectangular region of width $w$ with magnetic field $B_0=0.1 \hat{k}$ Tesla, as shown in the figure. The ion finally hits a detector at the distance $x$ below its starting trajectory.

[Given: Mass of neutron/proton $=(5 / 3) \times 10^{-27} kg$, charge of the electron $=1.6 \times 10^{-19} C$.]

Which of the following option($s$) is(are) correct?

$(A)$ The value of $x$ for $H^{+}$ion is $4 cm$.

$(B)$ The value of $x$ for an ion with $A_M=144$ is $48 cm$.

$(C)$ For detecting ions with $1 \leq A_M \leq 196$, the minimum height $\left(x_1-x_0\right)$ of the detector is $55 cm$.

$(D)$ The minimum width $w$ of the region of the magnetic field for detecting ions with $A_M=196$ is $56 cm$.

  • [IIT 2024]

A particle with charge to mass ratio, $\frac{q}{m} = \alpha $ is shot with a speed $v$ towards a wall at a distance $d$ perpendicular to the wall. The minimum value of $\vec B$ that exist in this region perpendicular to the projection of velocity for the particle not to hit the wall is

The motion of a charged particle can be used to distinguish between a magnetic field and electric field in a certain region by firing the charge