- Home
- Standard 11
- Physics
4-1.Newton's Laws of Motion
hard
Two masses $m$ and $M$ are attached to the strings as shown in the figure. If the system is in equilibrium, then

A
$\cot \theta=1+\frac{2 m}{M}$
B
$\tan \theta=1+\frac{2 M}{m}$
C
$\tan \theta=1+\frac{2 m}{M}$
D
$\cot \theta=1+\frac{2 M }{ m }$
Solution

$\frac{2 T}{\sqrt{2}}=m g$
$T=\frac{m g}{\sqrt{2}}$
$T^{\prime} \cos \theta=\frac{T}{\sqrt{2}}$
$T^{\prime} \sin \theta=\frac{T}{\sqrt{2}}+M g$
$\frac{T}{\sqrt{2}}(\tan \theta-1)=M g$
$\tan \theta=1+\frac{2 M}{m}$
Standard 11
Physics