Gujarati
Hindi
4-1.Newton's Laws of Motion
normal

Two masses $m$ and $M$ are attached to the strings as shown in the figure. If the system is in equilibrium, then 

A

$tan\theta = 1 +\frac{{2M}}{m}$

B

$cot\theta = 1 + \frac{{2M}}{m}$

C

$tan\theta = 1 + \frac{{2M}}{m}$

D

$cot\theta = 1 + \frac{{2M}}{m}$

Solution

$m g=2 T \sin 45^{\circ}$

$m g=\sqrt{2 T}$

$T_{1} \cos \theta=T \cos 45^{\circ}$

$T_{1} \cos \theta=\frac{T}{\sqrt{2}}=\frac{m g}{2}$

$\left\{T=\frac{m g}{\sqrt{2}}\right\}$

Further, $M g+T \cos 45^{\circ}=T_{1} \sin \theta$

$T_{1} \sin \theta=M g+\frac{M g}{\sqrt{2}} \frac{1}{\sqrt{2}}$

$T_{1} \sin \theta=M g+\frac{m g}{2}$

$\tan \theta=\frac{M g+\frac{m g}{2}}{\frac{M g}{2}}=1+\frac{2M}{m}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.