Two metallic wires $P$ and $Q$ have same volume and are made up of same material. If their area of cross sections are in the ratio $4: 1$ and force $F_1$ is applied to $\mathrm{P}$, an extension of $\Delta l$ is produced. The force which is required to produce same extension in $Q$ is $\mathrm{F}_2$.The value of $\frac{\mathrm{F}_1}{\mathrm{~F}_2}$ is__________.

  • [JEE MAIN 2024]
  • A

    $16$

  • B

    $14$

  • C

    $20$

  • D

    $50$

Similar Questions

A wire of area of cross-section $10^{-6}\,m^2$ is increased in length by $0.1\%$. The tension produced is $1000\, N$. The Young's modulus of wire is

The force required to stretch a wire of crosssection $1 cm ^{2}$ to double its length will be ........ $ \times 10^{7}\,N$

(Given Yong's modulus of the wire $=2 \times 10^{11}\,N / m ^{2}$ )

  • [JEE MAIN 2022]

A rod is fixed between two points at $20°C$. The coefficient of linear expansion of material of rod is $1.1 \times {10^{ - 5}}/^\circ C$ and Young's modulus is $1.2 \times {10^{11}}\,N/m$. Find the stress developed in the rod if temperature of rod becomes $10°C$

A steel wire of diameter $2 \,mm$ has a breaking strength of $4 \times 10^5 \,N$.the breaking force ......... $\times 10^5 \,N$ of similar steel wire of diameter $1.5 \,mm$ ?

The modulus of elasticity is dimensionally equivalent to