Two parallel plates have equal and opposite charge. When the space between them is evacuated, the electric field between the plates is $2 \times {10^5}\,V/m$. When the space is filled with dielectric, the electric field becomes $1 \times {10^5}\,V/m$. The dielectric constant of the dielectric material

  • A

    $1/2$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

A parallel plate capacitor is made of two circular plates separated by a distance $5\ mm$ and with a dielectric of dielectric constant $2.2$ between them. When the electric field in the dielectric is $3 \times 10^4$ $ Vm^{-1}$ the charge density of the positive plate will be close to

  • [JEE MAIN 2014]

A source of potential difference $V$ is connected to the combination of two identical capacitors as shown in the figure. When key ' $K$ ' is closed, the total energy stored across the combination is $E _{1}$. Now key ' $K$ ' is opened and dielectric of dielectric constant 5 is introduced between the plates of the capacitors. The total energy stored across the combination is now $E _{2}$. The ratio $E _{1} / E _{2}$ will be :

  • [JEE MAIN 2022]

A parallel plate condenser is connected with the terminals of a battery. The distance between the plates is $6\,mm$. If a glass plate (dielectric constant $K = 9$) of $4.5\,mm$ is introduced between them, then the capacity will become.......$times$

The plates of a parallel plate capacitor are charged up to $100\, volt$. A $2\, mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\, mm$. The dielectric constant of the plate is

Four identical plates $1, 2, 3$ and $4$ are placed parallel to each other at equal distance as shown in the figure. Plates $1$ and $4$ are joined together and the space between $2$ and $3$ is filled with a dielectric of dielectric constant $k$ $=$ $2$. The capacitance of the system between $1$ and $3$ $\&$ $2$ and $4$ are $C_1$ and $C_2$ respectively. The ratio $\frac{{{C_1}}}{{{C_2}}}$ is