Two particles, $1$ and $2$ , each of mass $m$, are connected by a massless spring, and are on a horizontal frictionless plane, as shown in the figure. Initially, the two particles, with their center of mass at $x_0$, are oscillating with amplitude a and angular frequency $\omega$. Thus, their positions at time $t$ are given by $x_1(t)=\left(x_0+d\right)+a \sin \omega t$ and $x_2(t)=\left(x_0-d\right)-$ $a$ sin $\omega t$, respectively, where $d>2 a$. Particle $3$ of mass $m$ moves towards this system with speed $u_0=a \omega / 2$, and undergoes instantaneous elastic collision with particle 2 , at time $t_0$. Finally, particles $1$ and $2$ acquire a center of mass speed $v_{ cm }$ and oscillate with amplitude $b$ and the same angular frequency. . . . .
($1$) If the collision occurs at time $t_0=0$, the value of $v_{ cm } /(a \omega)$ will be
($2$) If the collision occurs at time $t_0=\pi /(2 \omega)$, then the value of $4 b^2 / a^2$ will be
Give the answer or quetion ($1$) and ($2$)
$75,4.30$
$75,4.25$
$75,4.35$
$75,4.40$
A space craft of mass $'M' $ and moving with velocity $ 'v' $ suddenly breaks in two pieces of same mass $m$. After the explosion one of the mass $ 'm'$ becomes stationary. What is the velocity of the other part of craft
Two particles of masses $m_1, m_2$ move with initial velocities $u_1$and $u_2$ On collision, one of the particles get excited to higher level, after absorbing energy $\varepsilon $. If final velocities of particles be $v_1$ and $v_2$ then we must have
A uniform chain of length $3\, meter$ and mass $3\, {kg}$ overhangs a smooth table with $2\, meter$ laying on the table. If $k$ is the kinetic energy of the chain in joule as it completely slips off the table, then the value of ${k}$ is (Take $\left.g=10\, {m} / {s}^{2}\right)$
A projectile is moving at $20\,m/sec$ at its highest point where it breaks into two equal parts due to an internal explosion. One part moves vertically up at $30\,m/sec$ . Then the other part will move at ............. $\mathrm{m}/ \mathrm{s}$
A sphere of mass $m$, moving with velocity $V$, enters a hanging bag of sand and stops. If the mass of the bag is $M$ and it is raised by height $h$, then the velocity of the sphere was