A uniform chain of length $3\, meter$ and mass $3\, {kg}$ overhangs a smooth table with $2\, meter$ laying on the table. If $k$ is the kinetic energy of the chain in joule as it completely slips off the table, then the value of ${k}$ is (Take $\left.g=10\, {m} / {s}^{2}\right)$

  • [JEE MAIN 2021]
  • A

    $40$

  • B

    $60$

  • C

    $400$

  • D

    $10$

Similar Questions

A man is standing on a cart of mass double the mass of man. Initially cart is at rest. Now man jumps horizontally with relative velocity $'u'$ with respect to cart. Then work done by internal forces of the man during the process of jumping will be :

A balloon filled with helium rises against gravity increasing its potential energy. The speed of the balloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy ? You can neglect viscous drag of air and assume that density of air is constant.

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. Choose the correct statement(s) related to particle $m$ 

From a stationary tank of mass $125000$ pound a small shell of mass $25$ pound is fired with a muzzle velocity of $1000\, ft/sec$. The tank recoils with a velocity of ............ $\mathrm{ft/sec}$

The inclined surfaces of two movable wedges of same mass $M$ are smoothly conjugated with the horizontal plane as shown in figure. $A$ washer of mass $m$ slides down the left wedge from a height $h$. To what maximum height will the washer rise along the right wedge? Neglect friction.