A uniform chain of length $3\, meter$ and mass $3\, {kg}$ overhangs a smooth table with $2\, meter$ laying on the table. If $k$ is the kinetic energy of the chain in joule as it completely slips off the table, then the value of ${k}$ is (Take $\left.g=10\, {m} / {s}^{2}\right)$
$40$
$60$
$400$
$10$
A projectile moving vertically upwards with a velocity of $200\, ms^{-1}$ breaks into two equal parts at a height of $490\, m$. One part starts moving vertically upwards with a velocity of $400\, ms^{-1}$. How much time it will take, after the break up with the other part to hit the ground? .............. $\mathrm{s}$
A light spring of length $20\, cm$ and force constant $2\, kg/cm$ is placed vertically on a table. A small block of mass $1\, kg$. falls on it. The length $h$ from the surface of the table at which the ball will have the maximum velocity is ............... $\mathrm{cm}$
The inclined surfaces of two movable wedges of same mass $M$ are smoothly conjugated with the horizontal plane as shown in figure. $A$ washer of mass $m$ slides down the left wedge from a height $h$. To what maximum height will the washer rise along the right wedge? Neglect friction.
Write the equation of total mechanical energy of body of mass $m$ falls freely from height $H$.
A body of mass $50\, kg$ is projected vertically upwards with velocity of $100 \,m/sec$. $5 \,seconds$ after this body breaks into $20\, kg$ and $30 \,kg$. If $20\, kg $ piece travels upwards with $150 \,m/sec$, then the velocity of other block will be