Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by

  • A

    $r$

  • B

    $r/k$

  • C

    $r/\sqrt k $

  • D

    $r\sqrt k $

Similar Questions

Two positively charged spheres of masses $m_1$ and $m_2$ are suspended from a common point at the ceiling by identical insulating massless strings of length $l$. Charges on the two spheres are $q_1$ and $q_2$, respectively. At equilibrium, both strings make the same angle $\theta$ with the vertical. Then

  • [KVPY 2014]

Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10\, micro-coulomb$) are suspended by two insulating threads of equal lengths $3\, m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle $120^o$ between them, as shown in the figure. What is the tension in the threads (Given : $\frac{1}{{\left( {4\pi {\varepsilon _0}} \right)}} = 9 \times {10^9}\,Nm/{C^2}$)

An electric field due to a positively charged long straight wire at a distance $r$ from it is proportional to $r^{-1}$ in magnitude. Two electrons are orbiting such a long straight wire in circular orbits of radii $1 A$ and $2 A$. The ratio of their respective time periods is

  • [KVPY 2016]

Two charges $\mathrm{q}$ and $-3\mathrm{q}$ are placed fixed on $x-$ axis separated by distance $\mathrm{'d'}$. Where should a third charge $2\mathrm{q}$ be placed such that it will not experience any force ?

Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z$ axis. If a $-ve$ point charge is placed at a distance $z$ away from the above frame $(z<< L)$ then

  • [AIIMS 2005]