6.System of Particles and Rotational Motion
medium

Two rotating bodies $A$ and $B$ of masses $m$ and $2\,m$ with moments of inertia $I_A$ and $I_B (I_B> I_A)$ have equal kinetic energy of rotation. If $L_A$ and $L_B$ be their angular momenta respectively, then

A

$L_B>L_A$

B

$L_A>L_B$

C

$L_A=$$\frac{{{L_B}}}{2}$

D

$L_A=2L_B$

(NEET-2016)

Solution

Here, ${m_A} = m,{m_B} = 2m$

Both bodies $A$ and $B$ have equal kinetic energy of rotation 

${k_A} = {k_B} \Rightarrow \frac{1}{2}{I_A}\omega _A^2 = \frac{1}{2}{I_B}\omega _B^2$

$ \Rightarrow \frac{{\omega _A^2}}{{\omega _B^2}} = \frac{{{I_B}}}{{{I_A}}}\,…\left( i \right)$

Ratio of angular momenta,

$\frac{{{L_A}}}{{{L_B}}} = \frac{{{I_A}{\omega _A}}}{{{I_B}{\omega _B}}} = \frac{{{I_A}}}{{{I_B}}} \times \sqrt {\frac{{{I_B}}}{{{I_A}}}}$   $……….(i)$

$= \sqrt {\frac{{{I_A}}}{{{I_B}}}}  < 1 ( {{I_B} > {I_A}}$
${L_B}>{L_A}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.